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Abstract

A summary of the technical work performed during the past twelve

months under AFOSR Grant 85-0195 is presented in this report. Signifi-

cant progress on a number of adaptive concepts has been made. Problems

associated with earlier adaptive mesh schemes controlling cell area/

volume have been resolved. Resolution of this difficulty led to the

evolution of an adaptive orthogonal scheme for two-dimensional grids.

This technique is even structurally simpler than the original Poisson

equation based adaptive methods. Other research emphasis has been

placed on developing an unstructured solution scheme as a fast solver

to generate these grids. -o
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Introduction

The work schedule for the first year as presented in the original

proposal is shown below for completeness.

Proposed first year activities:

1.1 One-dimensional grid speed calculations will be completed. Best

method for general time-dependent calculations will be selected.

1.2 Best technique for advancing grid in time accurate calculations

will be selected from the one-dimensional experiments.

1.3 First attempts will be made at construction of a general two-

dimensional adaptive routine for multiple block systems.

1.4 Collaboration will be initiated with AFWAL on incorporating adapt-

ive technology in existing codes.

1.5 An analysis of appropriate error measures for use in adaptive

grid studies will be made.

Actual research topics deviated from those originally considered

due to unresolved issues remaining from earlier thoughts and new ideas

and potential applications which were judged to be more important. A

brief review of each of four separate areas of research explored over

the past year is presented in the next section.

Research Status

1. Adaptive Grid Scheme for Controlling Cell Area/Volume

In January, 1987, a paper was presented at Reno AIAA meeting (Ref 1)

relating the cell area or volume to the grid control functions of the

Thompson scheme. By way of review, the Poisson grid generator proposed

by Alan Winslow in 1981 introduced a diffusion, D, through the grid laws

V • (DV&) = 0

V • (DVn) = 0



The diffusion controls the mapping relating the computational co-

ordinates.

If I is defined as

I = mxn - Cyn

The Laplacian of I may be formed to relate the differential cell

area (i/I = J) to the diffusion term. Thus,

2
V2  ?V2T0 + nl 72r 7 @

V2-. 2 _ 2 2V

x ay y ax x an y ax

ax ay a xn a+2 a-x* " *

If the grid is not highly skewed, the last bracketed expression may be

assumed to be small and a differential equation of the form

V - D) - VJ • (J - D) = 0

where barred quantities represent ln and J = 1/I.

A solution of this equation is

J = constant x D.

In the original paper, the cross term in the brackets of the expansion

2
of V I was omitted. This error necessitated a search for the reason

that known analytic mappings did not satisfy the Jacobian diffusion

relation. When the cross term is included, numerical and analytical

results agree. However, the use of the J = KD approximation as an

adaptive measure works very well and is a viable way of providing an

adaptive grid.

2. Othogonal, Adaptive Grids

An adaptive grid that is also orthogonal provides a number of com-

putational advantages. In addition to simplification of boundary con-

dition application, the elimination of off-diagonal terms in numerical



algorithms is an important advantage. Conditions for generating ortho-

gonal grids have been well known for a number of years but the ability

to produce adaption was only added during the past few months of the

present grant period.

If the Thompson scheme is written assuming that the resulting

grid in physical space is orthogonal, the cross-derivative term is 0.

This leads to an expression of the form

(r., + re) + y (ra + r4 0

where

4. T
r =(X,y)

x2 2 S2
c x +y S* n n nl

= 2+ X 2 S
a. ,

".. and i and P are the Thomas and Middlecoff grid control functions.

Let2

2_
.. y 2Y S 2

-- ,/ Then

r r +r + E- r + r

However, the theory of quasi-conformal mapping assures that an

-- orthogonal map is produced by solving the equation

3/D (fr ) + - r) 0

subject to appropriate boundary conditions. In this expression, f

is the conformal module or the cell aspect ratio as previously noted.

If this generating equation is expanded

f f
r + T r

f 2

Thus, the conformal module is related to the usual and ~P(P,Q) of

III M '111 .



the Poisson schemes by the expressions

f f

The key point is to note that f is the ratio of arc lengths. Consequent-

ly, these lengths may be adjusted by using some weight function scheme.

Thus, if

f = Sn/S
-. i

and an arc equidistribution scheme is employed to evaluate the variation

in arc lengths,

SW 2 = Constant = C2

S W =Constant = C
2 2

then
W 1C2

f = W2 C
1 2 I

The constants are easily obtained by noting that f = I in regions with

no adaption.

This method has been applied to several simple geometric problems

and works surprisingly well. Continued development of this technique is

necessary.

While the two-dimensional adaptive orthogonal scheme works well,

the same ideas in three dimensions cannot be employed. When orthogonality

is required in three dimensions, the off-diagonal terms in the metric

tensor are set to zero. At this point, all options on control of the
9'

grid have disappeared and no adaption is possible. If however, the

V.- restriction to Euclidian space is removed, the new concepts may be ap-

-p plied. The problem is that mappings in non-Euclidian space not only

influence geometry but typical solvers are altered. As a result, any

venture into this area necessitates more than a simple grid mapping study.

0q



3. Linear Elliptic Adaptive Grid Generation

Several popular grid generation methods (Anderson(1) diffusion,

Thompson(2), Winslow(3)) are based on a set of linear elliptic govern-

ing equations. However, these linear equations are transformed from

physical (x,y)-space to computational ( ,n)-space. The transformed

equations then become non-linear, and are solved in computational space

for the (x,y) coordinates of the grid points. Although the original

equations are linear and uncoupled, the transformed equations are non-

linear and strongly coupled. Therefore, the possibility of solving the

original linear equations in physical space was examined, resulting in

the development of a new adaptive grid generation method.

The basis for this new adaptive grid generation method is solving

a set of linear elliptic partial differential equations in physical

space. As such, it is necessary to have an initial, base grid on which

the solution is to be found. This base grid can be generated by any

method as long as it is reasonably smooth and non-overlapped. Once the

base grid is defined, one can generate grids that are smooth, adapted

to specified weight functions, and orthogonal at specified boundaries.

The basic elliptic equation set is that of the diffusion grid generation

method.

The diffusion method of Anderson(l) has proven to be a very power-

* ful adaptive grid generation method. The governing equations are given

by the set

V • D7 =0

7 - DVn = 0 (1)

where D(x,y) is the 'diffusion' function. The diffusion function D(x,y)

can be shown to be directly related to the local cell area (i.e. the

Jacobian) of the grid that results from solving the diffusion equation

L0VV



set. Therefore, if one wishes to have a grid that adapts to a positive

weight function W(x,y), then one should chose the diffusion function such

that

- DW = constant (2)

Thus, where the weight function is large, the diffusion will be small,

and in turn the local grid spacing will be small. There are several ad-

vantages to this method:

1. The method satisfies an extremum principle for any choice of

D(x,y) > 0. This means that the method is guaranteed to pro-

duce grids without overlap.

2. Only one grid control function (namely D) need be chosen. This

can be contrasted to other elliptic-based methods that require

the specification of two grid control functions (e.g. the

Thompson scheme requires the choice of two functions P and Q).

3. The diffusion equations can be transformed into equations that

are identical to the Thompson equations where:

q2 -VD V
7 2 = P(x,y) = VD

-VD

7 29 = Q(x,y) = -D _ 7n
D

* The normal practice when solving elliptic grid generation equations

is to interchange the dependent ( ,n) and independent (x,y) variables to

get an equation set of the form (for the diffusion method):

0,D Dn

ax$$ - 2Bxn + yx (ax -Bx )w-- (Bx -yx

D D
ay -2Byn +yy = (ay - Byn)li- - (By - )-

where

II,0i



2 2
a n  Y T

B =xx + y y

2 2

One can see that these equations are non-linear and coupled due to the

presence of the factors a,B,y which depend on both x and y. Instead of

solving this non-linear set of equations in computational space, it was

found that one could solve the linear uncoupled set (eq. 1) in physical

space. The advantages of this approach are:

i. Since the governing equation set is linear, elliptic and satis-

fies an extremum principle, there exists a unique solution.

2. Standard iterative methods (such as successive overrelaxation,

conjugate gradient, and others) will be guaranteed to converge

regardless of the initial guess for the solution.

3. The possibility exists for using very fast direct solution

techniques such as cyclic reduction and fast-fourier-transform

type schemes. Therefore, the adaptive computational grid could

be computed in one direct-solution step, without iteration.

4. Implementation of Neumann-type boundary conditions becomes

almost trivial. In many cases, one would like the grid lines

to be orthogonal at certain boundaries of the domain. This

results in a Neumann-type boundary condition which can be im-

posed directly on the linear grid equations. This is opposed

A to methods that solve the equations in computational space.

In that case, the grid points must slide along the boundary

and therefore the boundary must be spline-fit after each

%f iteration. This incurs additional expense and program complexity.

4-



5. No interpolation is needed during each iteration to updateIthe values of the weight function at the grid points. In a

standard method, the weight function must be updated after

each iteration, which is a very costly procedure.

The real advantage of this method will be experienced in the gener-

ation of three-dimensional adaptive grids. Standard three-dimensional

adaptive grid generation methods require that the grid points slide

along boundaries. This requires a sophisticated surface definition

method (such as bi-cubic patches). On the other hand, the new linear
'C.

adaptive method does not require the movement of points along any boundary.

*- The method was tested on a set of model problems set in the unit square.

The first example (fig. 1) shows the result of adaption to the function

1 if r <
W(x,y) = 2 if r > 4 (3)

where

12 1
r = (x - ) + (y -)

The grid adapts well to the weighting function and is clearly uniform where

W is uniform. The second example (fig. 2) involves adaption to a model of

a shock wave where the weighting function is given by W =1+ 10Vul 2 where

u = tanh(2x - y) (4)

The grid adapts to the model shock wave in a reasonably smooth manner. It

should be noted that the grid was specified to be orthogonal to all boundaries.

VThe linear adaptive grid generation method has also been tested on

realistic turbomachinery problems. In all cases it has proven to be robust

and efficient and should find wide application in computational fluid dynamics.

W6~
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4. Generation of Unstructured Triangular Grids Using Elliptic Partial

Differential Equations

The past few years have seen a growing interest in the use of unstruc-

tured triangular grids in computational fluid dynamics (cf. Jameson [4],

Lohner [5]). One of the major difficulties in the generation of unstruc-

tured grids is to produce grids that are smooth, non-overlapped and adapt-

*i ive to a specified weight function. Therefore, a new method has been

developed for generating adaptive unstructured triangular grids based on

elliptic partial differential equations (PDE). The use of an elliptic PDE

ensures that the resulting grid is non-overlapped and smooth, while adapt-

ion is achieved by using Anderson's diffusion method [3].

The new adaptive grid generation method is based on solving the

equations (see above discussion for more details on the diffusion method)

V DV = 0

V DVi=0 (1)

These equations are transformed to computational space to give a set of

equations to be solved for the (x,y)-coordinates of the grid:

AD DDn

ax, - 2Bx + yx - B - B - TI)D

ay 2BY + YY (ay- By) - (By -y

L where

2 2i,"a =x + y

. B x xx + Y Yrl

_- Y = 2 + y 2

For an unstructured grid, the computational space would also be unstruc-

04'u . . .



tured (as opposed to a structured grid that produces a uniform grid in

computational space). Therefore, instead of transforming to computa-

tional space, we use the concept of a master element [6]. Each triangular

element in physical space is mapped to the single triangular master element.

All computations are done on the master element and then mapped back to

physical space. The governing equations are discretized using a standard

finite element procedure and solved by simple point relaxation. The

method was tested on a model problem set in the unit circle. The initial

unstructured grid is shown in fig. 3 and was generated using a Delaunay

triangulation procedure [7]. Figure 4 shows the result of requiring that

the grid adapt to the weight function

10 if r < -W(x ,y) = 10if
i--O if r > -

(2)

where

12 12i r = (x -2 + (y -

Note that where the weight function is large, the grid cells are small,

and vice versa. Also note that the grid is relatively uniform where the

weight function is uniform

This research has shown that methods that have been successfully used

to generate structured adaptive grids can be applied to generate unstruc-

tured adaptive grids. The new unstructured grid adaption method should

find wide applicability in the new flow solvers being developed for tri-O

angular grids.
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Figure 2 Linear adaptive grid generation-Example 2
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Figure 3 Unstructured Adaptive Grid Generation: Initial Grid
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Figure 4 Unstructured Adaptive Grid Generation: Adapted Grid



Expected Progress During the Next Six Months

i. The diffusion formulation for adaptive grids will be sub-

% mitted for publication in a journal as soon as a few more

a' geometric examples of the application of the method are

S complete.

2. The work on orthogonal adaptive grids will be submitted

for publication during the next six months. This work is

important because it ties the solution of the Poisson grid

generators directly to construction of two-dimensional

orthogonal adaptive grids with a minimum of change.

3. A paper on the linear adaptive grid solver will be submitted

to a suitable conference. This approach shows promise in

accelerating the grid generation procedure when Poisson grid

generators are used.

4. Since unstructured grids appear to hold great promise, work

will continue on development of unstructured solvers. In a

previous report, work on finite-volume solvers was presented

and finite-element solvers were applied here. Some decision

must be reached on the best direction for continued research

in this area.

5. In addition to the grid generation schemes discussed in this

report, application to practical problems must receive at-

tention. Work continues on applications to airfoils and it

is expected that a number of results will be forthcoming for

airfoils, wings, reentry configurations, and turbine and

cascade flows.



6. The adaptive grid technology developed under this AFOSR

sponsored program will be implemented in a new blocked grid

generator. This interactive blocked grid generator iF being

developed by General Dynamics, Fort Worth under Air Force

contract.

In addition to the expected publications noted in this section,

the principal investigator has been invited to present a lecture on

A Application of Poisson Grid Generators to Problems in Fluid Dynamics

at the 7th International Conference on Finite Element Methods in

Flow Problems in 1989.

Publications either accepted or appearing over the past twelve months.

Anderson, Dale A., "An Adaptive Grid Scheme Controlling Cell Area!

-~ Volume," presented at the 25th Aerospace Sciences meeting, Reno,

Nevada. AIAA paper 87-0102, January, 1987.

Anderson, Dale A., "Equidistribution Schemes, Poisson Generators and

Adaptive Grids," Applied Mathematics and Computation, December, 1987.

Noack, R.W. and Dale A. Anderson, "Solution Adaptive Grid Generation

using Parabolic Partial Differential Equations," will be presented

at the 26th Aerospace Sciences meeting, Reno, Nevada. ALAA paper

88-0315, January, 1988.
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